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ABSTRACT

A novel technique to determine the phase velocity of long-wavelength

shoaling waves is investigated. Operationally, the technique consists of three

steps. First, using the Hilbert transform of a time series, the phase of the

analytic signal is determined. Second, the correlations of the phases of analytic

signals between two points in space are calculated and an average time of travel

of the wave fronts is obtained. Third, if directional spectra are available or can

be determined from time series of large array of buoys, the angular information

can be used to determine the true time of travel. The phase velocity is obtained

by dividing the distance between buoys by the correlation time. Using the Hilbert

transform approach, there is no explicit assumption of the relation between

frequency and wavenumber of waves in the wave field, indicating that it may be

applicable to arbitrary wave fields, both linear and nonlinear. Limitations of the

approach are discussed.
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I. INTRODUCTION

As ocean waves shoal, the wave field evolves substantially from its deep

water state. While the geometry of the dynamic currents and of the bottom

topography determine the direction and to some extent the energy of the spectral

components, nonlinearities in the wave field lead to harmonic generation and to

spectrum broadening. Furthermore, for a nonlinear wave field, there is an

apparent negative refraction of the spectral peak (Abreu et al. 1992). Thus, for a

known sloping bottom, the refraction away from the beach normal is a direct

consequence of nonlinear energy transfer. On the other hand, linear theory

does not predict most of these changes, and for a given shoaling spectrum,

linear theory might lead to an incorrect determination of the beach normal.

Directional spectrum has become commonly used to describe nonlinear

random ocean waves because it provides ways to estimate the significant wave

heights in a breaker and also to determine the predominant direction for net

sediment transport. Considerable progress has been made over the last two

decades to study the evolution of the wave spectrum due to refraction,

diffraction, and nonlinear interaction under conditions of mild slope (Lui et al.

1985, Freilich and Guza 1984, Abreu et al. 1992). However, field conditions

often violate the basic assumption that the wavelength be smaller than the

characteristic length scale of bottom variations. Nevertheless, it can be shown

(Larraza, 1994) that using a ray optics approximation, the determination of the

kinematic wave parameters (wavelength, direction of propagation) for a given
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geometry is within 5% of its true value. On the other hand, the determination of

the dynamic values (energy, momentum) exceeds at least 15% the true value.

Thus by using ray theory, sediment transport and other relevant effects caused

by the wave's momentum will be ill estimated.

For an arbitrary bottom topography, wave energy and momentum can be

calculated within the physical optics approximation. The passage from

geometrical to physical optics can in principle be accomplished by use of a path

integral formulation approach. Within this formulation, the basis states are

characterized by the "rays", and the physical optics results from a sum over all

the possible paths (and not only the path determined by Fermat's principle). The

path integral formulation approach has not been considered previously either for

gravity waves over a changing topography or for shoaling waves. This situation

is particularly surprising because the problem can be stated from the onset by

using the known results of ray optics, either linear or nonlinear, and performing a

sum over all possible ray paths of the basis states. Even though there are

standard analytical techniques to deal with certain special cases, the most

general ones can only be solved numerically.

Because the sea floor is known to be a controlling factor in low-frequency

shallow water wave propagation (Akal, 1980, Akal and Jensen 1983), phase

velocity measurements can in principle be used to determine bottom topography,

which can in turn be used for true ground determination in remote sensing

applications. The inverse problem, that is, the determination of the topography

given the evolution of the spectrum along a path requires an accurate technique
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to determine celerity and direction of the waves in a given wave field data.

Common techniques of Fourier transform are usually inadequate. In the Fourier

transform, a real space-time signal is converted to a complex frequency-

wavevector signal. Thus, for applications to ocean wave field data a dispersion

relation between frequency and wavenumber has to be assumed in order to

determine the phase velocity of the spectral components. The problem can be

complicated by nonlinearities in the wave field.

On the other hand, the Hilbert transform of a real valued time-space signal

is another real value time-space signal for which the phase of a signal can be

calculated in terms of the signal itself and its Hilbert transform. Thus by using

the time series of a signal measured at different points, one can determine a

relative phase shift and extract phase velocity measurements without reference

to a dispersion relation.

In this thesis we present an analysis of ocean surface waves data

obtained by The Naval Research Laboratory Stennis Center, in support of

Hamlet's Cove I (Smith, 1994). An immediate goal is to extract phase velocity

information from time series at three buoys. The data analysis technique used

throughout this thesis is based on the Hilbert transform. This technique allow us

to get local properties, local energy and local frequency, of the signal instead of

the global properties that others techniques, like the Fourier transform, would

give (Long, 1995).

In Chapter II we give a brief introduction to linear water waves and point

out their dispersive character. We also present a description of the local
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topography for the wave data that we analyze and emphasize the need for an

inverse problem in arbitrary topographies. Chapter III gives a detailed account

of the basic ideas involved in Hilbert transforms. In Chapter IV we present the

results and the procedures used for the analysis of the data. The data was

analyzed using the Fast Fourier Transform (FFT), the Hilbert transform, and the

cross-correlation functions of MATLAB. In Chapter V we discuss the results and

provide some recommendations for future work.
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II. SURFACE WAVES IN THE HAMLET'S COVE I EXPERIMENT

In the first part of this chapter, we present a brief introduction to surface

gravity waves over uniform depth and emphasize their dispersive behavior. In

contrast, the data that we analyze throughout this thesis is over nonuniform

terrain. The second part of this chapter gives a detailed description of the local

topography for the Hamlet's Cove I experiment.

A. SURFACE WAVES IN WATER

When a group of waves moves across the surface of water, each

particular wavecrest travels faster than the group as a whole, and eventually

passes through it. Thus new crest continually are being created at the back of

the group while old crests are disappearing at the front.

This behavior does occur because water waves are dispersive. We can

say that this implies that the different Fourier components that make the general

disturbance have phase velocities that depend on their wavelength. For surface

waves, if the surface elevation of water with uniform depth h is described by the

wavetrain

Ti = Acos(kx- cot) , (1.1)

the wave speed is given by
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c = o / k = tanh(kh)1 , (1.2)

so that waves of longer wavelength, X = 2r /k, travel faster. In Eq (1.1) k is the

wavenumber and co is the frequency of the wave.

While each individual wavecrest travels with speed c, the velocity of travel

of the group as a whole is the group velocity

Cg = d)/ dk (1.3)

The phase velocity in water with uniform depth h (Acheson, 1995) can not

exceed g-h. For kh large, i.e. h >>X, tanh(kh) =- 1 , and

c2  g/ k , (1.4)

corresponding to the case of infinite depth. A good approximation for deep water

waves is for depths h greater than about IX. In shallow water, i.e. h << X / 27r,
3

tanh(kh) =- kh, and equation (1.2) becomes

c - gh (1.5)
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This equation is important, because as we can see c is independent of k for

shallow water. As we will see, the data analyzed in this thesis is remarkably

nondispersive.

B. HAMLET'S COVE TOPOGRAPHY

The data analyzed in this thesis is from three bottom-mounted pressure

gauge/ current meters for the measurements correspond to directional wave

spectra, currents, and tidal elevation. The gauges were deployed in depths of

10', 15', and 25' installed in support of Hamlet Cove I experiment.

The three bottom-mounted pressure gauges were placed on either side of

the sand bar as shown in Figures 2.1 and 2.2

86 o 48'10" 86 o 48'20"
30023'10"

S# 3 (Depth 10'

30023'00" 4 # 2 (Depth 15')

# 1 (Depth 25')
30 022'50"

Figure 2.1. Coordinates for the Positions of the gauges and their depths in feet.
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Figure 2.2. Distance from shore (m) of the three buoys and reference to the sand bar. The sand
bar profile, measured relative to the surface, is a t a depth of 1.3 m 150 m off shore.

The buoys used collected data from the wave as pressure, x-component

of the velocity and the y-component as well. The sampling was continuous with

a sampling frequency of 2 Hz.

Because the pressure gauge responds to the rise and fall to the free

surface, the pressure at depth z attenuates by a factor proportional to e -kz

where k is 27r/k and X is the wavelength of the Fourier component of the surface

disturbance. At the 15' and 25' depths, (gauges 1 and 2) frequencies above 0.3

Hz were below the noise level of the instruments and, therefore, were ignored in

the analysis. The high frequency cut-off for gauge number 3 is 0.5 Hz.

Table 2-1 shows the data collection periods for each instrument. We analyzed

the data collected by the three buoys in 16 July 1994.
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Gauge 1 2 3

14 JUL-20 JUL 14 JUL- 20 JUL 14 JUL- 20 JUL

20 JUL-29 JUL 20 JUL- 29 JUL 20 JUL- 29 JUL

29 JUL-1 AUG 29 JUL- 3 AUG 29 JUL- 3 AUG

DATES 3 AUG-10 AUG 3 AUG-10 AUG 3 AUG-9 AUG

12 AUG-17 AUG 10 AUG-17 AUG FAILED
18 AUG-24 AUG 18 AUG-24 AUG 17AUG-24 AUG

24 AUG-4 SEP FAILED FAILED

Table 2-1 Dates for the data collected at the three buoys. The data analyzed in this thesis
corresponds to data collected on 16 July 1994.

From the bathymetry survey shown in Figure 2.2, we can see that

refraction and diffraction effects from waves 60 m long and longer may be used

to characterize the bottom topography. This long waves, due mainly to swell, are

essentially nondispersive and already violate the conditions for ray optics to

apply. Because shorter dispersive waves are mainly due to local winds, they

would not give accurate topography estimates. Thus, phase velocity estimates

from the long waves are the first step to determine an unknown bathymetry.
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III. THE HILBERT TRANSFORM

In this chapter we review some of the basic concepts of the Hilbert

transform, following the review article by Bendat (1989). In order to elucidate the

concept and possible applications of the Hilbert transform, we present three

equivalent definitions, namely as a convolution integral, as a 7r/2 phase shifter,

and as an imaginary part of an analytic signal.

The Hilbert Transform of a real valued signal is a complex signal called

the analytic signal. The real part of the analytic signal is the original real-valued

time signal while the imaginary part is a copy of the original signal with each of its

Fourier components shifted in phase by 90 (Bendat, 1989) . The transformed

signal retains the same amplitude and frequency information contained in the

original signal with the added phase information dependent on the phase of the

original data.

For any real time series, C(t), the Hilbert transform ý (t) is

+00

S f 1t) dt ,(3.1)

in which P implies the principal value. The analytic continuation of the Hilbert

transform is thus the Cauchy integral which corresponds to translations of an

analytic' function in the complex domain of integration.

The analytic signal Z(t) is the real based time series defined by
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Z (t) = •(t) + j =(t) , (3.2)

which can also be written as
Z(t) = A(t) e jO(t) (3.3)

where A(t) is called the envelope signal or the amplitude and 15(t) is called the

instantaneous phase signal, defined by:

A (t) = [ 2 (t) + 4 2 (t) ] 1/2, (3.4)

and

*(t) =tan-'[4(t) / (t)], (3.5)

respectively. The instantaneous frequency co is given by

= d* (t) (3.6)
dt

and the local energy is one half of the square value of the amplitude. Eqs. (3.4),

(3.5), and (3.6) represents local properties in time.

The properties of the Hilbert Transform can be best understood in terms

of three equivalent definitions.

1) Definition as Convolution Integral

The Hilbert Transform of a real valued function C(t) extending from - - < t

< + - is a real valued function as described in (3.1):

12



•(t) =H[C(t)] = 1 P J (tt) dt (3.7)R _.t - t)

thus • (t) is the convolution integral of ý(t) with ( 1 / n t), written as

4• (t) M (t * t (3.8)

2) Definition as (n / 2) Phase Shift System

If F/( f) is the Fourier transform of 4 (t) , namely

F /(f) = fý (t) e -j21rft dt , (3.9)

then, from the convolution property of the Hilbert transform (Bendat, 1989) and

equation (3.7), it follows that F/( f ) is the Fourier transform of C(t), multiplied by

the Fourier transform of (1 / n t) where

S-j2rft -jforf>0 
(3.10)

S dtt j Jfor f < 0

Hence, equation (3.6) is equivalent to the passage of ý (t) through a system

defined by ( -j sgnf) to yield:

F / (f) = (-j sgnf) F"(f) , (3.11)

where F//(f) is the Fourier transform of ý(t). The complex-valued quantity F/( f ) is

the Hilbert transform of the complex-valued quantity F"/( f ) as defined by:

13



F '(f) = H [F" (f)]= (-j sgnf) F/"(f) (3.12)

The Fourier transform (-j sgnf) can be represented by

fe-j(/2) forf > 01
B(f) = - jsgnf = je j 1/2) forf < 0 (3.13)

or using the complex polar notation

-j4o (f)
B(f) = B(f)j e (3.14)

Hence, B(f) is a (n /2 ) phase shift system where

B(f) = 1 for all f, (3.15)

and

7c /2 for f > O0

b(f) = -7r 2 for f < 0 (3.16)

Thus if one writes:

F// (f) = IF// ()i e+jx(f), (3.17)

it follows that

F'(f) = IF'(f)I eljx(f) = F"(f)i ej1 (Px(t)+9 b(t), (3.18)
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Thus the Hilbert transform consist of passing t(t) through a system which leaves

the magnitude of F/ (f) unchanged, but changes the phase from 0), (f) to 0 , (f) +

Sb (f). Thus

-px(f) - (px(f) + (n / 2) for f > 0 , (3.19a)

Cpx(f) --> (px (f) - (K / 2) for f < 0 (3.19b)

in other words, the Hilbert transform shifts by 7c /2 for positive frequencies and

by -Td2 for negative frequencies.

3) Definition as Imaginary part of Analytic Signal

A third useful way to understand and to compute the Hilbert transform is

to introduce the analytic signal Z(t) which allows us to work with the amplitude

A(t), and the phase 4 (t) equations (3.4 and 3.5). Time derivatives of the phase

yield the instantaneous frequency co (3.6).

Examples of Hilbert transforms and the corresponding Fourier transform

of some simple functions are shown in Figure 3.1. The convolution and phase

shifts due to the Hilbert transform are apparent. Also apparent is the fact that

the analytic signal preserves local amplitude.

SIGNAL TRANSFORM HILBERT TRANSFORM FOURIER
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v fo

cos (2z f. t) sin (2z fo t)

\-1F ,v t N Ft

sin t 1 - cost

t t

Figure 3.1. Some examples of Hilbert Transform.
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IV. DATA ANALYSIS

In this chapter we present the procedure and the results of the analysis of

the Hamlet's Cove I surface wave data. The main goal is to determine if there is

any phase correlation between data at the three buoys after low pass filtering

and applying the Hilbert transform to the filtered data. Phase correlations can

provide valuable information because they can tell us if the signal recorded from

the three buoys corresponded to the same wave and if so, they can yield directly

the phase velocity of the wave. Phase velocity is obtained by interpolating the

correlation time between the buoys for which the location is known.

The data analyzed is of pressure measurements from a pressure gauge

and two orthogonal components of velocity from a current meter. Because

pressure gauge measurements are more sensitive to long waves, we will

consider the low pass filtered output from for pressure gauge of measurements

on 16 July 1994.

A. THE CHEBYSHEV TYPE II FILTER

An optimal filter needs to maintain amplitude information with no phase

distortion in the pass band. In our case, the latter requirement is particularly

important because from our approach, phase velocity values can only be

determined from phase correlations. Because the filtering process should

17



minimize distortion of all small amplitude fluctuations, the stop band has to be at

least 40 dB below the pass band to eliminate possible leakage problems and it

has to have a minimum transition width to ensure good frequency separation.

Most of these requirements can be met by with a Chebyshev type II filter. Higher

order filters could introduce numerical errors, so the filter has to meet the

requirements with the lowest order possible.

As shown in the Appendix (mfile), we used Matlab Signal Processing

Toolbox (Mathworks, 1994). Of the two techniques, Analog Prototyping and

Direct Design, we chose Analog Prototyping because the Direct Design

technique has very stringent numerical accuracy constraints.

The Analog Prototyping technique allows the construction of digital

equivalents of certain classical analog filters, especially Butterworth, Bessel,

Chebyshev, and Elliptic. Among them and for ours purpose the Chebyshev Type

II filter has the narrower transition and the flatter pass band response needed for

the analysis of the data.

Analog filters are IIR (infinite-duration impulse) type filters, which

necessarily introduce phase distortion. In order to overcome this problem the

data was filtered both directions, forward and reverse by using the Matlab

function filffilt (Mathworks, 1994). With this approach, we can get precise zero-

phase distortion and doubling of the filter order. Also, filtfilt minimizes startup

and ending transients by adjusting initial conditions.

18



B. THE XCORRELATION FUNCTION

Matlab's function xcorr estimates the cross-correlation sequence of

random processes. For the purpose of determining phase velocity values from

apparently random time series, the cross-correlation function is important

because it can provide a measure of the similarity between two signals.

The xcorrfunction can calculate the cross-correlation between two arrays

of vectors of the same length, the autocorrelation for a vector, and the cross-

correlation for a matrix. In all these forms of xcorr, the zero lag of the output is in

the middle of the sequence. In order to normalized the sequence we used the

option 'coeff so the autocorrelations at zero lag are identically 1.0.

C. PROCEDURE AND RESULTS

Figure 4.1 shows the Fourier transform of the pressure time series for the

three buoys. From the shape of the spectrum, we can conclude that waves due

to the local wind may correspond to frequencies above 0.1 Hz. If phase velocity

values can be used to determine local bathymetry, waves generated by the local

wind are unwelcome noise for the purpose of our analysis. Instead, the longer

waves in the swell may characterize the bathymetry more accurately because of

their direct response to the bottom topography manifested by refraction and

diffraction effects. Swell may correspond to frequencies below 0.08 Hz, which

we chose as the cutoff frequency for the low pass band of the filter.
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0.2 buoy 1

0.1

0 0.1 0.2 0.3 0.4 0.5

Frequency (Hz)

"U)

0- 0.2 buoy 2
E
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0Z __ _ _ _ _ _
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Frequency (Hz)

0.5

buoy 3

0 0.1 0.2 0.3 0.4 0.5

Frequency (Hz)

Figure 4.1. FFT of the pressure data for the three buoys. Frequencies above 0.1 Hz may
correspond to waves generated by the local wind as evidenced by the increase of
spectral energy and range.

With this information in mind, we filtered the whole time series using a

Chebyshev Type II filter with a cut off frequency of 0.08 Hz. Because of the

Chebyshev Type II filter introduces phase distortion, the wave data was filtered

in both the forward and reverse directions using the MATLAB function fl/ffilt, thus
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obtaining precise zero-phase distortion and doubling of the filter order. As

mentioned before, filffilt minimizes startup and ending transients by adjusting

initial conditions.

We applied the Hilbert transform to the filtered time series. Figure 4.2

shows the Matlab Power Spectrum function (PSD) of unfiltered time series and

the PSD of the Hilbert transform of the data from the first buoy after filtering.

Apparent from the figure, is that the power spectrum of the unfiltered data does

not exhibit very good frequency-energy decomposition. On the other hand, the

power spectrum of the Hilbert transform of the filtered time series shows good

frequency-energy decomposition and enhancement of the more energetic waves

of the filtered time series.

The data from each buoy has 172,800 points corresponding to two data

point per second in a full day. Because this large array is numerically very

demanding, we chose to work with a window of two hours, or 10% of the whole

data. We applied Matlab's Hilbert transform (ý(t)) function to the filtered data in

this time window. Along with the real time series (Y1), MATLAB generates the

analytical signal

Z(t)= Yl(t) + i (t) ,(4.1)

which is similar to Eq. (3.2).

21



10 0 a

10-2

10-
4

CO 10 .6

( 10.3 10 -2 101 100

.- 0

c o

E 10

-2

10

-4

10

-610

10.3 10.2 10-1 100

frequency(Hz)

Figure 4.2. a) Power spectrum density for the pressure data at buoy 1without filtering. b) Power
spectra density of the Hilbert transform after low pass filtering using a Chebyshev
type II filter with a 0.08 cutoff frequency.

Matlab's functions angle and unwrap (phase in radians 2*pi wrap), provide

the phase of the time series (4.1). Shown in Figure 4.3 are the graphs

corresponding to the phase of the whole pressure data from buoy 1 and also for

the two hours window.
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Figure 4.3. Phase (rad) as a function of time (min) for the pressure data at buoy 1 for a) one day,
b) two hours.

The local frequency is by definition the slope of the phase and we applied

to the phase data the MATLAB function diff and divided by the time between

points (called tbp in Appendix) to get this slope. Figure 4.4 shows a plot of the

local frequency as a function of time obtained from the data shown in Figure 4.3.

-• 0.15
0

(D
0.1

Q 0.05
S,., i L J.k~a AA ,AJ•.l•, .. ,Jh, .I,&"
0)

-0.05 V7iIr TIm wr
-0.0517

0 20 40 60 80 100 120
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Figure 4.4. Local angular frequency as a function of time for buoy 1 for a two hour time window.
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Figure 4.5 shows the cross-correlation of data from buoys 1, 2, and 3

using the xcorrfunction in MATLAB. The cross-correlation is blown-up in Figure

4.6. At the maximum of the cross-correlation we can obtain the time when the

signals from two different buoys are highly correlated. Using this time, and

knowing the distance between buoys, we can estimate the phase velocity at

which the wave is moving from one buoy to the other. Assuming that the three

buoys started to record the data at the same time, we get the phase velocities

estimates shown in Table 4-1.

°"•• a

0 - -" I 'I --

0 500 1000 1500

0) 1
Eb"a- o.s',%•
N
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Figure 4.5. Cross correlation of the phase between a) buoys 1 and 2, b) buoys 1 and 3, and c)
buoys 3 and 2.
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Figure 4.6. Blown up of the cross correlations in Figure 4.5.

distance correlation time calculated phase
velocity

Buoy 1 - Buoy 2 123.46 m 34s 3.63 m / s

Buoy 2 - Buoy 3 219.16 m 163s 1.35 m / s

Buoy 1 - Buoy 3 342.62 m 102s 3.36 m / s

Table 4-1. Relations of the distances among the buoys, correlation time and phase velocity.
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V. DISCUSSION OF RESULTS AND RECOMMENDATIONS FOR
FUTURE WORK

We have investigated the Hilbert transform as a tool to determine phase

velocity from ocean wave data of three buoys. The values tabulated in Table 4-1

were obtained by dividing the distance between buoys by the time for maximum

phase correlation of the time series of pressure measurements at the

corresponding buoys.

Table 5-1 is a comparison between the values of phase velocity as

determined by the correlation times to the values of phase velocity assuming

linear shallow water theory over uniform bottom topography. The value of the

phase velocity determined from shallow water theory represents an upper bound.

If the normal to the wave front makes an angle with the line joining two buoys,

the value of phase velocity obtained from correlations of the time series will yield

an underestimation. Thus, the low values obtained from the correlations may be

due, in part, to an effective average over all possible directions.

phase velocity from average depth calculated phase
correlations velocity

Buoy 1 - Buoy 2 3.63 m/s 6.10 m 7.73 m/sec

Buoy 2 - Buoy 3 1.35 m/s 3.81 m 6.11 m / sec

Buoy 1 - Buoy 3 3.36 m/s 5.34 m 7.23 m / sec

Table 5.1 Comparison of phase velocity values determined from correlations (second
column) and from shallow water theory (fourth column) assuming uniform depth
(third column).
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It is then apparent that to accurately determine the phase velocity from

time series, we require an accurate directional spectral data or surface height

time series from a bigger array of buoys. An accurate directional spectra

provides the necessary angular information that can be used to determine the

true value of the phase velocity. As shown by Rikiishi (1978) time series from a

minimum of three buoys cannot be used to determine directional spectra for a

broadband distribution of waves.

Any data analysis on time series from pressure gauge measurements

have fundamental limitations. First, because the pressure gauge responds to

the rise and fall to the free surface, the pressure at depth z attenuates by a factor

proportional to e-kz where k is 21r/X and X. is the wavelength of the Fourier

component of the surface disturbance. Unless the wave data corresponds

exclusively to shallow water, the correlation time determined from the phase of

the Hilbert transform at two points may be inaccurate. Second, if the wave field

is nonlinear, the pressure and the surface height are nonlinearly related. Due to

nonlinearities, the correlation time from pressure gauge measurements may yield

misleading phase velocity results. Thus, phase velocity values from phase

correlations using the Hilbert transform, are more reliable with time series of

surface height measurements.

If the deficiencies noted above can be corrected, the preliminary results of

this thesis are evidence of the powerful technique of using Hilbert transform to

determine the phase velocity of low frequency shoaling waves. This technique

can be summarize operationally as follows. The analytic signal of a time series
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possesses a natural phase. Correlations of the phase yield an average time of

travel. If directional spectra are available, the angular information can then yield

the true time of travel from which the phase velocity can be determined. In this

approach, there is no explicit assumption of the relation between frequency and

wavenumber of waves in the wave field, indicating that it may be applicable to

arbitrary wave fields, both linear and nonlinear.
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APPENDIX MATLAB CODE

This appendix contains the particular mfile (Matlab Code) that we used to
analyze the data from the three buoys in order to extract the information that we
were interesting on.

%Loading the desired data
load l6julla.dat
p1=1 6jull a(:,1)
clear l6ju~lla
load l6jul2a.dat
p2=juI2a(:,1)
clear 1 6juI2a
load 16jul3a.dat
p3=1 6jul3a(:,3)
clear 16ju13a
pl=pl-mean(pl)
p2=p2-mean(p2)
p3=p3-mean (p3)
fs=2 ;%Sampling frequency
M1= max(size(pl)) ;%Get Number of data points
N=1 72800 ;%Total number of points
f=0:fsIN:(N-1)*(fs/N) ;%Normalizing the x-axis to frequency
tbp=0.5 ;%Time between data points in seconds
tl=[1:M1].*(tbp/60) ;%Normalizing the x-axis to time in minutes
% Looking for the FIFT of the data from the three buoys to select the
desired frequencies
131 =ffi(pl )*2/length(p1)
P2=fft(p2)*2/length (p2)
P3=ffl(p3)*2/length (p3)
% Applying the flilter and Hilbert Transform to the data
cf-low=0.08 ; %cut off frequency for buoys 1,2 and 3.
[bi ,al ]=cheby2(5,40,cfjlow/(fs/2));%Chebyshev filter 5 order 40 dB for data

%form buoy 1
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Yl=filtfilt(bl, al, pl) ; %Filtering data from buoy 1

clear pl ; %Clear data pressure 1 from memory
V-wavepl=hilbert(Y1) ; %Hilbert Transform data from buoy 1

phasepl=angle(V-wavepl) ; %Phase of the Hilbert Transform for buoy 1
[S1 ,fl]=psd(Y1 ,1024,fs) ;%examine spectrum of the low wave

%without filtering

[S2,f2]=psd(V-wavepl,1 024,fs) ;%examine spectrum of the low wave
%after filtering and the Hilbert transform

[b2,a2]=cheby2(5,40,cfjlow/(fs/2)); %Chebyshev filter order 5 , 40 dB.

Y2=filtfilt(b2, a2, p2) ;%Filtering data from buoy2

clear p2 ; %Clear data pressure 2 from memory

V-wavep2=hilbert(Y2) ; %Hilbert Transform data from buoy 2
phasep2=angle(V-wavep2) ; %Phase of the Hilbert Transform for buoy 1

[b3,a3]=cheby2(5,40,cflow/(fs/2)); %Chebyshev filter for data from buoy 3
Y3=filtfilt(b3, a3, p3) ; %Filtering data from buoy 3

V-wavep3=hilbert(Y3) ; %Hilbert Transform data from buoy 3
phasep3=angle(V-wavep3) ; %Phase of the Hilbert Transform for buoy I
clear p3 ; %Clear data pressure 3 from memory

%Looking in a two hours windows of the data for each buoy
V-wavepl=V wavepl(1:14400) ; %points correspond to a two hours windows
V-wavep2=V wavep2(1:14400) ; %points correspond to a two hours windows
V-wavep3=Vwave p3(1:14400) ; %points correspond to a two hours windows

Y1=Y1 (1:14400) ; %points correspond to a two hours windows

Y2=Y2(1:14400) ; %points correspond to a two hours windows
Y3=Y3(1:14400) ; %points correspond to a two hours windows

tl=tl (1:14400) ; %Two hour time window

%Looking for the phase of the Hilbert Transform for the two hour window
thetal =unwrap(angle(V-wavepl)); %Phase of the Hilbert transform in radians
theta2=unwrap(angle(V-wavep2)); %Phase of the Hilbert transform in radians

theta3=unwrap(angle(VWwavep3)); %Phase of the Hilbert transform in radians
%Looking for the derivative of the phase of the Hilbert Transform for the
two hour window
dthetal = diff(thetal ./tbp) ; %By definition the Local frequency at
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%buoy 1

dtheta2 = diff(theta2./tbp) ;%By definition the Local frequency at

%buoy 2

dtheta3 = diff(theta3./tbp) ;%By definition the Local frequency at

%buoy 3

%Looking for the cross-correlation of the phase of the Hilbert transform

Cp21 =xcorr(phasep2, phasepl,'coeff') ;%Xcorrelations of the phase of the

%signal from Buoy 2 and 1.

Cp31=xcorr(phasep3, phasepl,'coeff') ;%Xcorrelations of the phase of the

%signal from Buoy 3 and 1.

Cp32=xcorr(phasep3, phasep2,'coeff') ;%Xcorrelations of the phase of the

%signal from Buoy 3 and 2.

Cps2l=fftshift(Cp21) ; %Shift of the correlations

Cps31=fftshift(Cp31) ; %Shift of the correlations

Cps32=fftshift(Cp32) ; %Shift of the correlations

%Plots of the FFT of the data pressure from the three buoys

subplot (3,1,1)

plot(f,abs(P1)),axis([O 0.5 0 0.05]),grid,title('FFT of Data Pressure

of buoy 1 vs Frequency'),

subplot (3,1,2)

plot(f,abs(P2)),axis([0 0.5 0 0.05]),grid,

title('FFT of Data Pressure of buoy 2 vs Frequency'),
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subplot (3,1,3)

plot(f,abs(P3)),axis([O 0.5 0 0.05]),grid,

title('FFT of Data Pressure of buoy 3 vs Frequency'),

xlabel('Frequency'),ylabel('Normalized magnitude')

clear P1; clear P2; clear P3 ;%Release memory

%Plot of the Power Estimate Spectrum

figure; clf;

subplot(2, 1, 1)

loglog(fl,S1),axis([1E-3 1 1E-6 1]);

title('Power spectrum Estimate of Pressure data frequency without filtering');

ylabel('magnitude (dB)');

subplot(2, 1, 2)

loglog(f2,S2),axis([1E-3 1 1E-6 1]);

title('Power spectrum Estimate of V wavepl after Hilbert Transform ');

xlabel(['frequency(Hz)-cutoff frequency',num2str(cf low),'Hz']);

ylabel('magnitude (dB)');

%Plot of the Phase in radians (Unwrap) of the Hilbert transform

figure; clf;

subplot(3, 1, 1)

plot(tl,(phase-l)),

title('Plot of the phase of Hilbert Transform of the pressure data buoy 1');

xlabel('time(min)'); ylabel('Phase(rad)');
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subplot(3, 1, 2)

plot(tl ,(phase2)),title('PIot of the phase of Hubert Transform of the pressure

data buoy 2'); xlabel('time(min)') ;ylabel('Phase(rad)');

subplot(3, 1, 3)

plot(tl ,(phase3)),title('Plot of the phase of Hubert Transform of the pressure

data buoy 3'); xlabel('time(min)'); ylabel('Phase(rad)');

%Plots of the Local frequency as a function of the time, data from buoy 1

figure; clf;

plot(tl ,dthetal); title('PIot of the Local Frequency as a function of time at buoy

1'); xlabel('time(min)'); ylabel('frequency(rad/sec)');

%Plots of the correlations of the data of the three buoys

figure;clf;

subplot(3, 1, 1)

plot(tl ,abs(0p21 )),gridtitle('Correlation of Phase of the data from Buoy 2 and

Buoy 1 '),xlabel('Time(sec)');

subplot(3, 1, 2)

plot(tl ,abs(0p31)),gridtitle('Correlation of Phase of the data from Buoy 3 and

Buoy 1 '),xlabel('Time(sec)');

subplot(3, 1, 3)

plot(tl ,abs(0p32)),gridtitle('Correlation of Phase of the data from Buoy 3 and

Buoy 2') ,xlabel('Time(sec)');

%Plot of the shift of the correlations of the Phase from the three buoys
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figure;clf;

subplot(3, 1, 1)

plot(tl,abs(Cps2l)),grid,title('Shift of Correlation of Phase of the data from Buoy

2 and Buoy l'),axis([O 1500 0 1]);

subplot(3, 1, 2)

plot(tl,abs(Cps3l)),grid,title('Shift of Correlation of Phase of the data from Buoy

3 and Buoy l'),axis([O 1500 0 1]);

subplot(3, 1, 3)

plot(tl,abs(Cps32)),grid,title('Shift of Correlation of Phase of the data from Buoy

3 and Buoy 2'),axis([O 1500 0 1]);

%Plot of the Maximum values of the shifted correlations

figure;clf;

subplot(3, 1, 1)

plot(abs(Cps2l)),grid,title('Max. value of the Correlation of the Phase of the data

from Buoy 2 and Buoy l'),axis([O 40 0.7 0.85]);

subplot(3, 1, 2)

plot(abs(Cps3l)),grid,title('Max. value of the Correlation of the Phase of the data

from Buoy 3 and Buoy 1'),axis([75 150 0.5 0.7]);

subplot(3, 1, 3)

plot(abs(Cps32)),grid,title('Max. value of the Correlation of the Phase of the data

from Buoy 3 and Buoy 2'),axis([120 200 0.5 0.66]);
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